Tunable Charge Transfer Dynamics at Tetracene/LiF/C60 Interfaces
نویسندگان
چکیده
Ultrafast optical spectroscopy was utilized to investigate charge transfer dynamics across organic semiconductor tetracene/C60 interfaces in the presence of a LiF barrier layer. Photoinduced absorption spectra in the 1.6−2.3 eV range reveal a strong effect of the intermediate LiF barrier layer on dynamics of the charge transfer excitons (CTE) creation and recombination. Increasing thickness of the LiF film from 0 to 1 nm significantly suppresses CTE recombination while CTE generation remains practically unaltered. Further increase of LiF thickness to 2 nm prevents creation of CTE by diffusion from tetracene but does not affect direct CTE excitation by incident photons. Unlike thin films studied here, direct CTE photogeneration at the interface between thick organic films accounts for a small fraction (as compared to diffusion-induced) of total CTE population, resulting in a larger contribution of the LiF barrier to charge separation efficiency.
منابع مشابه
Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures
Charge-transfer (CT) excitons at heterointerfaces play a critical role in light to electricity conversion using organic and nanostructured materials. However, how CT excitons migrate at these interfaces is poorly understood. We investigate the formation and transport of CT excitons in two-dimensional WS2/tetracene van der Waals heterostructures. Electron and hole transfer occurs on the time sca...
متن کاملInvestigating the resonance energy and charge transfer in the clonidine and c60-clonidine-fullerene carriers with quantum chemistry calculations
Clonidine has two aromatic rings in which halogens are attached to one ring in this study, both in drug state and in fullerene nanostructure, and by changing the type of halogen at the * HF / 6-31G level and in The gas phase was first optimized and then the NBO calculations were performed. The results obtained in N61, N63 and N5, N3 indicate the highest rhizanese energy and load transfer that, ...
متن کاملPolarization Energies at Organic-Organic Interfaces: Impact on the Charge Separation Barrier at Donor-Acceptor Interfaces in Organic Solar Cells.
We probe the energetic landscape at a model pentacene/fullerene (C60) interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e., the stabilization a charge feels due to its environment, is larger at the ...
متن کامل5-nm LiF as an Efficient Cathode Buffer Layer in Polymer Solar Cells Through Simply Introducing a C60 Interlayer
Lithium fluoride (LiF) is an efficient and widely used cathode buffer layer (CBL) in bulk heterojunction polymer solar cells (PSCs). The LiF thickness is normally limited to 1 nm due to its insulting property. Such small thickness is difficult to precise control during thermal deposition, and more importantly, 1-nm-thick LiF cannot provide sufficient protection for the underlying active layer. ...
متن کاملRole of Thick-Lithium Fluoride Layer in Energy Level Alignment at Organic/Metal Interface: Unifying Effect on High Metallic Work Functions
We have investigated the function of ~3 nm thick lithium fluoride (LiF) buffer layers in combination with high work function metal contacts such as coinage metals and ferromagnetic metals for use in organic electronics and spintronics. The energy level alignment at organic/LiF/metal interfaces is systematically studied using photoelectron spectroscopy and the integer charge transfer model. The ...
متن کامل